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Academics and practitioners optimize portfolios using the
mean-variance approach far more often than the mean-
semivariance approach, despite the fact that semivariance
is often considered a more plausible measure of risk than
variance. The popularity of the mean-variance approach
follows in part from the fact that mean-variance problems
have well-known closed-form solutions, whereas mean-
semivariance optimal portfolios cannot be determined
without resorting to obscure numerical algorithms. This
follows from the fact that, unlike the exogenous covariance
matrix, the semicovariance matrix is endogenous. This
article proposes a heuristic approach that yields a
symmetric and exogenous semicovariance matrix, which
enables the determination of mean-semivariance optimal
portfolios by using the well-known closed-form solutions
of mean-variance problems. The heuristic proposed is
shown to be both simple and accurate.
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HAs is well known, Markowitz (1952) pioneered the issue
of portfolio optimization with a seminal article, later expanded
into a seminal book (Markowitz, 1959). Also well known is
that at the heart of the portfolio-optimization problem, there
is an investor whose utility depends on the expected return
and risk of his portfolio, the latter quantified by the variance
of returns.

What may be less well known is that, from the very
beginning, Markowitz favored another measure of risk: the
semivariance of returns. In fact, Markowitz (1959) allocates
the entire chapter IX to discuss semivariance, where he argues
that “analyses based on S [semivariance] tend to produce
better portfolios than those based on V [variance]” (see
Markowitz, 1991, page 194). In the revised edition of his
book (Markowitz, 1991), he goes further and claims that
“semivariance is the more plausible measure of risk” (page
374). Later he claims that because “an investor worries about
underperformance rather than overperformance,
semideviation is a more appropriate measure of investor’s
risk than variance” (Markowitz, Todd, Xu, and Yamane, 1993,
page 307).

Why, then, have practitioners and academics been
optimizing portfolios for more than 50 years using variance
as a measure of risk? Simply because, as Markowitz (1959)
himself suggests, variance has an edge over semivariance
“with respect to cost, convenience, and familiarity” (see
Markowitz, 1991, page 193). He therefore focused his
analysis on variance, practitioners, and academics followed
his lead, and the rest is history.

Familiarity, however, has become less of an issue over time.
In fact, in both practice and academia, downside risk has been
gaining increasing attention, and the many magnitudes that
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capture downside risk are by now well known and widely
used. The focus of this article is on the issues of cost and
convenience.

The difference in cost, Markowitz (1959) argues, is given
by the fact that efficient sets based on semivariance took,
back then, two to four times as much computing time as those
based on variance. The difference in convenience, in turn, is
given by the fact that efficient sets based on variance require
as inputs only means, variances, and covariances, whereas
those based on semivariance require the entire joint
distribution of returns. The ultimate goal of this article, then,
is to propose a heuristic approach to the estimation of portfolio
semivariance that renders the issues of cost and convenience
irrelevant, thus hopefully removing the last remaining
obstacles to a widespread use of mean-semivariance
optimization.

In a nutshell, this article proposes to estimate the
semivariance of portfolio returns by using an expression
similar to that used to estimate the variance of portfolio
returns. The advantages of this approach are twofold: 1)
estimating the semivariance of portfolio returns is just as easy
as estimating the variance of portfolio returns (and in both
cases the same number of inputs is required); and 2) it can be
done with an expression well known by all practitioners and
academics, without having to resort to any black-box
numerical algorithm. In addition, the heuristic proposed here
yields a portfolio semivariance that is both very highly
correlated and very close in value to the exact magnitude it
intends to approximate.

The article is organized as follows. Section I introduces
the issue, discusses the difficulties related to the optimization
of portfolios on the basis of means and semivariances, and
shows how they are overcome by the heuristic approach
proposed in this article. Section II, based on data on individual
stocks, markets, and asset classes, provides empirical support
for this heuristic. Section III concludes with an assessment.

l. The Issue

There is little doubt that practitioners rely much more on
mean-variance optimization than on mean-semivariance
optimization. This is largely because, unlike the neat closed-
form solutions of mean-variance problems known by most
academics and practitioners, mean-semivariance problems are
usually solved with obscure numerical algorithms. This, in
turn, is largely because, unlike the exogenous covariance
matrix used in mean-variance problems, the semicovariance
matrix of mean-semivariance problems is, as will be
illustrated, endogenous.

This section starts with some basic definitions and notation,
and then introduces the definition of portfolio semivariance
proposed in this article. A numerical example is then used to
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illustrate both the endogeneity of the usual definition of the
semicovariance matrix and the exogeneity of the definition
proposed here.

A. The Basics

Consider an asset i with returns R, where ¢ indexes time.
The variance of this asset’s returns (o) is given by

o/ =EBIR,—~u)'1=(1/T)- Y (R,~u) . (1)

where 1, denotes the mean return of asset i and 7' the number
of observations; and the covariance between two assets i and
j (Gij) is given by

o, =B[(R, - )R, 1 )] =(1/T) Y, (R, )R, =) ()

The semivariance of asset i’s returns with respect to a
benchmark B (Z?) is given by

T, =E{Min(R,~B,0)'}=(1/T)- Y, Min(R, = B,0)" , (3)

where B is any benchmark return chosen by the investor. The
square root of Equation (3) is the semideviation of asset i
with respect to benchmark B, a widely-used measure of
downside risk. Section A ofthe Appendix,' borrowing heavily
from Estrada (2006), provides a very brief introduction to
the semideviation and discusses some of the advantages it
has over the standard deviation as a measure of risk; Nawrocki
(1999) provides a brief history of downside risk and an
overview of downside risk measures.

The semicovariance between assets 7 and j (Z,y) is trickier
to define. Hogan and Warren (1974) define it as

=" =B{(R,—R,)-Min(R, =R, 0)} @

where the superscript HW indicates that this is definition
proposed by Hogan and Warren. This definition, however,
has two drawbacks: 1) the benchmark return is limited to the
risk-free rate and cannot be tailored to any desired benchmark,
and 2) it is usually the case that ZUHW;& ZﬁHW. This second
characteristic is particularly limiting both formally (the
semicovariance matrix is usually asymmetric) and intuitively
(it is not clear how to interpret the contribution of assets i
and j to the risk of a portfolio).

In order to overcome these two drawbacks, Estrada (2002,
2007) defines the semicovariance between assets i and j with
respect to a benchmark B (Z‘UB) as

3, =E{Min(R, - B,0)- Min(R, — B,0)} = .
1/T)- 2; [Min(R, —B,0)-Min(R , — B,0)]

This definition can be tailored to any desired B and
generates a symmetric (Zi,-B:ZﬁB) and, as will be shown,
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exogenous semicovariance matrix. Both the symmetry and
exogeneity of this matrix are critical for the implementation
of the proposed heuristic.

Finally, the expected return (Ep) and variance (sz) of a
portfolio are given by

E/} = Zf:1 XZ'EZ' ’

p=2 2
o, = i=1 =1 XX 0, (7

where x, denotes the proportion of the portfolio invested in
asset 7, £, the expected return of asset i, and n the number of
assets in the portfolio.

(6)

B. The Problem

Portfolio-optimization problems can be specified in many
ways depending on the goal and restrictions of the investor.!
The problem of minimizing the risk of a portfolio subject to
a target return (E7) is given by

2 n n
o, = E ) E XX .0,
» i=1 J=1" Ty

Zj:1XiEz' =FE" and Zlexl_ =1, )

where risk is measured as the variance of portfolio returns.

This problem can be solved for a specific value of E” or,
alternatively, for several values of E7 thus generating the
minimum-variance set. Either way, it is important to notice,
first, that the risk of the portfolio can be expressed as a
function of the risk of the individual assets in the portfolio;
second, that all the variances, covariances, and expected
returns of the individual assets are exogenous variables; and
third, that this problem has a well-known closed-form
solution. For this reason, although it is not important for the
purposes of this article how the o, are estimated, it is important
that, once the values of these parameters (exogenous
variables) are determined, they become inputs (together with
E and E") in the closed-form solution of the problem, which
in turn yields the optimal allocation to each of the n assets in
the portfolio (the endogenous variables x, ).

But what if, instead of defining risk as the variance of
portfolio returns, an investor wanted to define it as the
semivariance of portfolio returns? What if, given a benchmark
return B chosen by the investor, he wanted to

22, =1/T)- Y, Min(R, —B,0) (10)

Min _ )
N1 5X2 500Xy

®)

Min

XY 5 X ey Xy

! There are four standard portfolio optimization problems: 1) minimizing
the risk of a portfolio; 2) minimizing the risk of a portfolio subject to a
target return; 3) maximizing the return of a portfolio subject to a target
level of risk; and 4) maximizing the risk-adjusted return of a portfolio.
The heuristic proposed here applies to all four problems; only, for
concreteness, most of the discussion is focused on the second problem.

Z;xiE,.:ET, Zlex,:L and x, >0 , (11

where R,,, denotes the returns of the portfolio and X * their
semivariance? The main obstacle to the solution of this
problem is that the semicovariance matrix is endogenous;
that is, a change in weights affects the periods in which the
portfolio underperforms the benchmark, which in turn affects
the elements of the semicovariance matrix.

In order to overcome this obstacle, many algorithms have
been proposed to solve the problem in Equations (10) and
(11), some of which are discussed below. More importantly,
this article proposes a heuristic approach to solve this problem
without having to resort to any black-box numerical algorithm.
In fact, as will be evident, the heuristic proposed here makes
it possible to solve not only the problem in Equations (10)
and (11), but also all mean-semivariance problems with the
same well-known closed-form solutions widely-used to solve
mean-variance problems.

More precisely, this article argues that the semivariance of
aportfolio with respect to a benchmark B can be approximated
with the expression

2133 = Z:‘l:1zj:1 Xl'X/Z:?'B ’ (12)

where 2o is defined as in Equation (5). This expression yields
a symmetric and exogenous semicovariance matrix, which
can then be used in the same way the (symmetric and
exogenous) covariance matrix is used in the solution of mean-
variance problems.

C. An Example

Table I displays the annual returns of the S&P-500 and the
Nikkei-225 between 1997 and 2006, as well as the return of
two portfolios: one invested 80% in the S&P and 20% in the
Nikkei, and the other invested 10% in the S&P and 90% in
the Nikkei. Consider for now the 80-20 portfolio. The
standard deviation of this portfolio can be calculated by first
estimating its returns over the sample period, and then
calculating the standard deviation of those returns. The fourth
column of Table I shows the returns of the 80-20 portfolio,
and the standard deviation of those returns, which can be
straightforwardly calculated using the square root of (1), is
16.7%.

Importantly, the standard deviation of the 80-20 portfolio
can also be calculated by using the square root of Equation
(7). Taking into account that the standard deviations of the
S&P and the Nikkei over the 1997-2006 period are 17.8%

2 Note, also, that this formulation of the optimization problem ignores
both the downside risk of individual assets and the downside covariance
between individual assets; see Sing and Ong (2000).
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Table I. The Endogenous Semicovariance Matrix
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This table shows the returns over the 1997-2006 period of the S&P-500 (S&P), the Nikkei-225 (Nikkei), a portfolio invested 80% in the
S&P and 20% in the Nikkei (80-20), and a portfolio invested 10% in the S&P and 90% in the Nikkei (10-90). ‘Conditional returns’ are
defined as 0% when the return of the portfolio is positive, and the return of the asset when the return of the portfolio is negative. All
returns are in dollars and account for capital gains and dividends. All numbers are in percentages.

Year S&P Nikkei 80-20 10-90 ‘Conditional Returns’
80-20 Portfolio 10-90 Portfolio
S&P Nikkei Product S&P Nikkei Product

1997 31.0 -21.2 20.6 -16.0 0.0 0.0 0.0 31.0 -21.2 -6.6
1998 26.7 -9.3 19.5 -5.7 0.0 0.0 0.0 26.7 -93 -2.5
1999 19.5 36.8 23.0 35.1 0.0 0.0 0.0 0.0 0.0 0.0
2000 -10.1 -27.2 -13.5 -25.5 -10.1 -27.2 2.8 -10.1 -27.2 2.8
2001 -13.0 -23.5 -15.1 -22.5 -13.0 -23.5 3.1 -13.0 -23.5 3.1
2002 -23.4 -18.6 -22.4 -19.1 -23.4 —18.6 4.4 -234 -18.6 4.4
2003 26.4 24.5 26.0 24.6 0.0 0.0 0.0 0.0 0.0 0.0
2004 9.0 7.6 8.7 7.7 0.0 0.0 0.0 0.0 0.0 0.0
2005 3.0 40.2 10.4 36.5 0.0 0.0 0.0 0.0 0.0 0.0
2006 13.6 6.9 12.3 7.6 0.0 0.0 0.0 0.0 0.0 0.0

and 24.1%, and that the covariance between these two indices
is 0.0163, it follows from Equation (7) that

o= {(0.82)(0.1782) + (0.22)(0.2412) +
2(0.8)(0.2)(0.0163)}1/2 = 16.7% ,

which is, of course, identical to the number obtained before
from the portfolio returns. So far, no mystery here.

The problem arises if the proper measure of risk is not the
portfolio’s variance, but its semivariance. One obvious way
of calculating this magnitude would be by first calculating
the returns of the portfolio and then using Equation (3) to
calculate the semivariance of'its returns. Assume a benchmark
return of 0% (B=0), and consider again the 80-20 portfolio.
We could first calculate the returns of this portfolio (shown
in the fourth column of Table I), and then calculate the
semivariance of its returns by using Equation (3). That would
obtain a portfolio semivariance with respect to 0% equal to
0.0092, and a portfolio semideviation equal to (0.0092)"?=9.6%.

Thus, for any given portfolio, its semideviation can always
be calculated as just explained. But here is the problem: if
instead of the semideviation of one portfolio, we wanted to
calculate the portfolio with the lowest semideviation from a
set of, say, 1,000 feasible portfolios, we would first need to
calculate the returns of each portfolio; then from those returns
we would need to calculate the semideviation of each
portfolio; and finally from those semideviations we would
need to select the one with the lowest value. Obviously, as
the number of assets in the portfolio increases, and the number
of feasible portfolios increases even more, choosing the
optimal portfolio with this procedure becomes intractable.

Look at this from a different perspective. If the elements
of the semicovariance matrix were exogenous, then we could
formally solve the given optimization problem and obtain a
closed-form solution. We could then input into this closed-
form solution the values of the exogenous variables of the
problem at hand, and obtain as a result the weights that satisfy
the problem. This is exactly what investors routinely do when
solving portfolio-optimization problems in the mean-variance
world. But the problem in the mean-semivariance world is,
precisely, that the elements of the semicovariance matrix are
not exogenous.

D. The Endogeneity of the Semicovariance
Matrix

Markowitz (1959) suggests estimating the semivariance of
a portfolio with the expression

Z;B = 27:122:1 XZ'XJ'S#B > (13)
where
K
S =/T)- >, (R, =B)R,=B) (14)

where periods 1 through K are those in which the portfolio
underperforms the benchmark return B.

This definition of portfolio semivariance has one advantage
and one drawback. The advantage is that it provides an exact
estimation of the portfolio semivariance. The drawback is
that the semicovariance matrix is endogenous; that is, a change
in weights affects the periods in which the portfolio
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underperforms the benchmark, which in turn affects the
elements of the semicovariance matrix.

To see the advantage of this definition of portfolio
semivariance, go back to the 80-20 portfolio in Table I, and
consider again B=0. The sixth column of this table shows the
‘conditional returns’ of the S&P defined, following Equation
(14), as 0% when the return of the 80-20 portfolio is positive
(thus outperforming the benchmark), and the return of the
S&P when the return of the 80-20 portfolio is negative (thus
underperforming the
benchmark). To illustrate, the
‘conditional return’ of the S&P
is 0% in 1997 because the 80-
20 portfolio delivered a
positive return, and —10.1%
(the return of the S&P) in 2000
because the 80-20 portfolio
delivered a negative return.
The seventh column shows the
‘conditional returns’ for the
Nikkei, and the eighth column
is just the product of the sixth
and the seventh columns.

The four terms of the
semicovariance matrix that
follow from Equation (14) can
be calculated as follows. Squaring the ‘conditional returns’
in the sixth column and taking their average obtains

estimating

heuristic,

Ssepsere—0-0082; doing the same with the ‘conditional returns’
in the seventh column obtains S =0.0164; and taking

Nikkei,Nikkei,0
the average of the numbers in the eighth column obtains
Ssepnikkeio—0-0102. Then, it follows from Equation (13) that
the semivariance of the 80-20 portfolio is

£(0.89)(0.0082) + (0.22)(0.0164)
+2(0.8)(0.2)(0.0102)}= 0.0092,

and its semideviation is (0.0092)"=9.6%, which is exactly
the same number obtained before.

Therefore, the expression proposed by Markowitz (1959)
does indeed provide an exact estimation of the portfolio
semivariance. But the problem is that, in order to estimate
this semivariance, we need to know whether the portfolio
underperforms the benchmark, and we then run into the
problem previously mentioned: the semicovariance matrix is
endogenous because a change in weights affects when the
portfolio underperforms the benchmark, which in turn affects
the elements of the semicovariance matrix.

To see this more clearly, go back to Table I and consider
now the portfolio invested 10% in the S&P and 90% in the
Nikkei. The returns of this portfolio are shown in the fifth
column, the ‘conditional returns’ (as defined above) of the
S&P and the Nikkei in the ninth and tenth columns, and the
product of these last two columns in the eleventh column.

The heuristic proposed is both
simple and accurate. Estimating  Sqepyii,=0-0011.
semicovariances is just as easy as
covariances,
aggregating them into a portfolio
semivariance is, with the proposed
just
aggregating covariances into a
portfolio variance.

Importantly, note that the ‘conditional returns’ of the S&P
and the Nikkei for the 10-90 portfolio that follow from
Equation (14) are different from those for the 80-20 portfolio
that follow from the same expression.

The four terms of the semicovariance matrix that follows
from Equation (14) can be calculated as before. Squaring the
numbers in the ninth column and then taking their average
obtains Sy, ¢, =0.0249; squaring the numbers in the tenth
column and then taking their average obtains
Syikkeinikkeio—0-0217; and taking
the average of the numbers in the
last column obtains
And
importantly, note that all these
numbers are different from those
calculated for the 80-20
portfolio. This clearly illustrates
that the semicovariance matrix
is endogenous because its
elements depend on the asset
weights.

Finally, for the sake of
completeness, with the numbers
just calculated Equation (13)
can be used to calculate the
semivariance of the 10-90
portfolio, which is given by

£(0.12)(0.0249) + (0.92)(0.0217)
+2(0.1)(0.9)(0.0011)} = 0.0181,

thus implying a semideviation of (0.0181)"*=13.4%.

and

as easy as

E. Some Possible Solutions

The endogeneity of the semicovariance matrix as defined
in Equation (14) has led many authors to propose different
ways of tackling the problem in Equations (10) and (11).
Hogan and Warren (1972) propose to solve this problem using
the Frank-Wolfe algorithm; they explain the two basic steps
of this iterative method (the direction-finding problem and
the step-size problem) and illustrate its application with a
simple hypothetical example. Ang (1975) proposes to
linearize the semivariance so that the optimization problem
can be solved using linear (instead of quadratic) programming.

Nawrocki (1983) proposes a further simplification of the
heuristic proposed by Elton, Gruber, and Padberg (1976).
The latter focus on the mean-variance problem and impose
the simplifying assumption that all pairwise correlations are
the same; the former further imposes a value of zero for all
of these correlations and extends the analysis to other
measures of risk, including the semivariance. In this heuristic,
assets are ranked according to the measure z, = (E-R f)/RMi,
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where RM, is a risk measure for asset 7, and assets with z>0
are included in the portfolio according to the proportions
w,=z/% z. Nawrocki and Staples (1989) expand the scope of
Nawrocki (1983) by considering the lower partial moment
(LPM) as a risk measure.

Harlow (1991) also considers the problem in Equations
(10) and (11) and generates mean-semivariance efficient
frontiers, which he compares to mean-variance efficient
frontiers. However, he does not explain how these frontiers
are obtained other than stating that the optimization process
uses the entire distribution of returns. Similarly, Grootveld
and Hallerbach (1999) generate mean-LPM efficient frontiers
and state that the numerical optimization process they use
for solving the problem in Equations (10) and (11) is tedious
and demanding, but do not provide details of such process.

Markowitz et al. (1993) transform the mean-semivariance
problem into a quadratic problem by adding fictitious
securities. This modification enables them to apply to the
modified mean-semivariance problem the critical line
algorithm originally developed to solve the mean-variance
problem.

More recently, de Athayde (2001) proposes a non-
parametric approach to calculate the portfolio semivariance,
as well as an algorithm (basically a series of standard
minimization problems) to optimize it and generate the
efficient frontier. Ballestero (2005), in turn, proposes a
definition of portfolio semivariance (restricting the
benchmark to the mean) that, when incorporated into
optimization problems, these can be solved by applying
parametric quadratic programming methods.

F. A Heuristic Approach

As previously advanced, the heuristic proposed in this
article is based on estimating the portfolio semivariance using
Equation (12), which in turn is based on Equation (5), which
generates a symmetric and exogenous semicovariance matrix.
Recall that with Equation (14) knowledge of whether the
portfolio underperforms the benchmark B is needed, which
generates the endogeneity problem discussed earlier. With
Equation (5), however, knowledge of whether /e asset (not
the portfolio) underperforms the benchmark B is needed.
Again, an example may help.

Table II reproduces the returns over the 1997-2006 period
of the S&P, the Nikkei, the 80-20 portfolio, and the 10-90
portfolio, all taken from Table I. As previously illustrated,
the elements of the semicovariance matrix that follow from
Equation (14) for the 80-20 portfolio are different from those
of the semicovariance matrix that follow from Equation (14)
for the 10-90 portfolio, which confirms the endogeneity of
this definition of semicovariance. As will be shown, the
elements of the semicovariance matrix that follow from
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Equation (5) are invariant to the portfolio considered and
are, therefore, exogenous.

To see this, calculate the four terms of the semicovariance
matrix that follow from this expression by considering once
again a benchmark return of 0%. First, redefine ‘conditional
returns’ as 0% when the return of the asset is positive (thus
outperforming the benchmark), and the return of the asset
when the return of the asset is negative (thus underperforming
the benchmark). To illustrate, the conditional return of the
S&P is 0% in 1997 because the S&P delivered a positive
return, and —10.1% (the return of the S&P) in 2000 because
the S&P delivered a negative return.

These ‘conditional returns’ of the S&P and the Nikkei are
shown in the sixth and seventh columns of Table II, and the
eighth column is the product of the previous two. Note that
because these ‘conditional returns’ depend on whether the
asset, not the portfolio, underperforms the benchmark, they
are relevant not only to estimate the semicovariance matrix
of the 80-20 portfolio, but also that of any other portfolio.

The four terms of the semicovariance matrix that follow
from Equation (5), then, can be calculated as follows.
Squaring the ‘conditional returns’ in the sixth column and
taking their average obtains X, ., =0.0082; doing the same
with the ‘conditional returns’ of the seventh column obtains
2 ieinikkeio—0-0217; and taking the average of the numbers
in the eighth column obtains 2., ... =0.0102. Then, it
follows from Equation (12) that the semivariance of the 80-
20 portfolio is

{(0.8%)(0.0082) + (0.2%)(0.0217)

+2(0.8)(0.2)(0.0102)} = 0.0094,

and its semideviation is (0.0094)'>=9.7%, very close to the
exact 9.6% number calculated previously from the portfolio
returns.

Importantly, if Equation (12) is used to calculate the
semivariance of the 10-90 portfolio, then

£(0.12)(0.0082) + (0.92)(0.0217)
+2(0.1)(0.9)(0.0102)} = 0.0195,

thus implying a semideviation of (0.0195)"*=14.0%. Note
that this number is very close to the exact 13.4% figure
calculated for this portfolio in section I.D. More importantly,
note that the only difference between this calculation and that
for the 80-20 portfolio is in the weights; the four elements of
the semicovariance matrix are the same.

In short, if semicovariances are defined as in Equation (14)
and portfolio semivariance as in Equation (13), then the
endogeneity problem occurs and black-box numerical
algorithms need to be used to solve portfolio-optimization
problems. If semicovariances are instead defined as in
Equation (5) and portfolio semivariance as in Equation (12),
then a symmetric and exogenous semicovariance matrix is
obtained, and the well-known and widely-used closed-form
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Table Il. The Exogenous Semicovariance Matrix

This table shows the returns over the 1997-2006 period of the S&P-500 (S&P), the Nikkei-225 (Nikkei), a portfolio invested 80% in the
S&P and 20% in the Nikkei (80-20), and a portfolio invested 10% in the S&P and 90% in the Nikkei (10-90). ‘Conditional returns’ are
defined as 0% when the return of the asset is positive, and the return of the asset when the return of the asset is negative. All returns are
in dollars and account for capital gains and dividends. All numbers are in percentages.

Year Assets Portfolios ‘Conditional Returns’
S&P Nikkei 80-20 10-90 S&P Nikkei Product

1997 31.0 -21.2 20.6 -16.0 0.0 -21.2 0.0
1998 26.7 -9.3 19.5 -5.7 0.0 -9.3 0.0
1999 19.5 36.8 23.0 35.1 0.0 0.0 0.0
2000 -10.1 -27.2 -13.5 -25.5 -10.1 -27.2 2.8
2001 -13.0 -23.5 -15.1 -22.5 -13.0 -23.5 3.1
2002 -23.4 -18.6 -22.4 -19.1 -23.4 -18.6 4.4
2003 26.4 24.5 26.0 24.6 0.0 0.0 0.0
2004 9.0 7.6 8.7 7.7 0.0 0.0 0.0
2005 3.0 40.2 10.4 36.5 0.0 0.0 0.0
2006 13.6 6.9 12.3 7.6 0.0 0.0 0.0

solutions of mean-variance portfolio optimization problems
can be applied.

G. A First Look at the Accuracy of the
Approximation

In order to take a preliminary look at the accuracy of the
approximation proposed, and to round up the example
discussed so far, Table III shows the returns of eleven
portfolios over the 1997-2006 period that differ only in the
proportions invested in the S&P and the Nikkei. The third
row from the bottom shows the exact semideviation of each
portfolio calculated from the portfolio returns and based on
Equation (3), and the second row from the bottom shows the
semideviation of each portfolio based on the approximation
proposed in Equation (12). In both cases the benchmark return
B is 0%. The last row shows the difference between the exact
and the approximate semideviations.

The correlation between the exact semideviations based
on Equation (3) and the approximate semideviations based
on Equation (12) is a whopping 0.98. Furthermore, the
difference between the approximate and the exact
semideviations is under 1% in all cases, with an average of
0.42%. Finally, the direction of the error is predictable;
whenever there is a difference between the two, the
approximate semideviation is larger than its exact counterpart.
In other words, whenever the approximation errs, it does so
on the side of caution, overestimating (by a small amount)
the risk of the portfolio.

Il. The Evidence

The heuristic proposed in this article yields a symmetric
and exogenous semicovariance matrix which, as discussed
earlier, makes it possible to solve mean-semivariance
optimization problems using the well-known closed-form
solutions widely-used for mean-variance optimization
problems. However, as with any heuristic, its usefulness rests
on its simplicity and accuracy. Its simplicity is hopefully
evident from the previous discussion; its accuracy is discussed
next.

This section starts by considering portfolios of stocks,
markets, and asset classes with the purpose of comparing their
exact semideviations to the approximate semideviations based
on the proposed heuristic. It then considers mean-variance
and mean-semivariance optimal portfolios, the latter based
on the proposed heuristic, with the goal of comparing the
allocations generated by these two approaches.

A. The Accuracy of the Approximation

In order to test the accuracy of the proposed heuristic over
awide range of assets, exact and approximate semideviations
were calculated for over 1,100 portfolios, some containing
stocks, some markets, and some asset classes. The data is
described in detail in section A of the Appendix. Table IV
summarizes the results of all the estimations.

Panel A shows the results for two-asset portfolios selected
from three asset classes: 1) US stocks, 2) emerging markets
stocks, and 3) US real estate, all of which exhibit statistically-
significant negative skewness over the sample period.
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Table lll. A First Look at the Accuracy of the Approximation

This table shows the return of eleven portfolios over the 1997-2006 period, each with different proportions invested in the S&P-
500 (S&P) and the Nikkei-225 (Nikkei). The returns of the S&P and the Nikkei are those in Tables I and II. 2 Equation (3) and
X ,Equation (12) denote the portfolio semideviations based on Equations (3) and (12), both with respect to a benchmark return
of 0%. The last row shows the differences DI Equation (12) — 2 Equation (3). All returns are in dollars and account for capital
gains and dividends. All numbers are in percentages.

Year Proportion of the Portfolio Invested in the S&P (%)
100 90 80 70 60 50 40 30 20 10 0

1997 31.0 25.8 20.6 15.3 10.1 49 -03 -5.5 -108 -160 212
1998 26.7 23.1 19.5 15.9 12.3 8.7 5.1 1.5 2.1 -5.7 93
1999 19.5 213 23.0 24.7 26.4 282 29.9 31.6 333 35.1 36.8
2000 -10.1  -11.8 -135 153  -17.0 -187 204 221 238 255 272
2001 -13.0 -141 -15.1 -162  -172 -183 -193 204 214 -25 235
2002 234 229 224 219 215 =210 205 200 -196 -19.1 186
2003 26.4 26.2 26.0 25.8 25.6 25.4 252 25.0 24.8 24.6 245
2004 9.0 8.9 8.7 8.6 8.4 8.3 8.2 8.0 79 7.7 7.6
2005 3.0 6.7 10.4 14.2 17.9 21.6 253 29.1 32.8 36.5 40.2
2006 13.6 12.9 12.3 11.6 10.9 10.3 9.6 8.9 8.3 7.6 6.9
2.,0Equation (3) 9.05 9.29 9.57 9.88 10.23 10.60 11.00 11.56 12.36 13.44 1475
2,0Equation (12) 9.05 9.32 9.68 10.12 1064 1121 11.84 1252 1323 1398  14.75
Difference 0.00 0.03 0.11 0.24 0.41 0.61 0.84 0.96 0.87 0.53 0.00

Table IV. Exact and Approximate Portfolio Semideviations

This table shows the annualized semideviations of portfolios with respect to a benchmark return of 0% over the January 1997-December
2006 period. For the assets in each line of Panel A, 101 portfolios were generated, with weights varying between 0% and 100% in each
asset (in increments of 1%), and their semideviation calculated. Avg D Equation (3) and Avg D Equation (12) denote the average
portfolio semideviations across the 101 portfolios based on Equations (3) and (12). ZFOEquation (3) Range denotes the range between
the minimum and the maximum values of z, Equation (3) across the 101 portfolios. Difference is between Avg X Equation (12) and
Avg X Equation (3) and Rho denotes the correlation betweeano Equation (3) and z, Equation (12), both across the 101 portfolios. For
the assets in each line of Panels B, C, and D, 100 random portfolios were generated and the process outlined for Panel A was repeated.
All returns are monthly, in dollars, and account for capital gains and dividends. All numbers but correlations are in percentages. A full
data description is available in the appendix.

Y, Equation (3) Avg. Avg. Difference Rho
Range > 0Equation (3) X, ,Equation (12)

Panel A. Asset Classes
USA-EMI 10.21-17.29 13.15 13.24 0.09 1.00
USA-NAREIT 7.37-10.21 8.16 8.48 0.32 0.99
EMI-NAREIT 8.48-17.29 11.66 11.96 0.30 1.00

Panel B. Emerging Markets

Group 1 (5 markets) 14.75-19.70 16.80 18.90 2.10 0.97
Group 2 (5 markets) 15.24-17.51 16.06 16.74 0.68 0.98
Group 3 (10 markets) 13.92-16.38 15.11 16.91 1.80 0.93

Panel C. DJIA Stocks
Group 1 (10 stocks) 9.99-13.16 11.26 13.33 2.07 0.90
Group 2 (10 stocks) 9.12-14.87 12.31 14.76 2.45 0.99
Group 3 (10 stocks) 9.34-12.37 10.59 12.92 2.34 0.95
Group 4 (30 stocks) 9.39-11.16 10.23 12.90 2.67 0.91

Panel D. Asset Classes
5 Asset classes 4.32-11.66 7.43 8.30 0.87 1.00
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Consider first the combination of US stocks and emerging
markets stocks (first line of Panel A). Portfolios were formed
with weights varying between 0% and 100% in the US market
(the rest being allocated to emerging markets), in increments
of 1%. Monthly returns over the January 1997-December
2006 period were then calculated for these 101 portfolios.
Using these returns, the exact semideviation with respect to
a 0% benchmark return was calculated for all these portfolios
according to Equation (3)
and subsequently
annualized. The second
column of the table shows
the minimum (10.21%) and
maximum (17.29%) values
across the 101 annualized
semideviations, and the
third column shows the
average (13.15%).

Approximate
semideviations according
to Equation (12), with
respect to a 0% benchmark return, were then calculated and
subsequently annualized for the 101 portfolios. The average
among all these annualized approximate semideviations
(13.24%) is reported in the fourth column of the table. The
difference between the average exact semideviation and the
average approximate semideviation is reported in the fifth
column, and at 0.09% in annual terms is basically negligible.
Furthermore, the correlation between the 101 exact and
approximate semideviations, reported in the last column, is a
perfect 1.00. These results obviously support the heuristic
proposed here.

The results are equally encouraging for portfolios of the
other two-asset combinations in Panel A, generated with the
methodology already described. The average difference
between exact and approximate semideviations is 0.32% for
the 101 portfolios of US stocks and real estate, and 0.30%
for the 101 portfolios of emerging markets and real estate,
both in annual terms. The correlations between the 101 exact
and approximate semideviations are 0.99 in the first case and
1.00 in the second. Again, these results are clearly
encouraging.

Panel B shows portfolios of emerging markets. Group 1
consists of 5 emerging markets (China, Egypt, Korea,
Malaysia, and Venezuela) that over the sample period
displayed statistically-significant positive skewness.
Portfolios were formed by generating 100 random weights
for each of these indices, subsequently standardized to ensure
that for each portfolio their sum added to one. As before,
returns for these 100 portfolios were calculated over the
January 1997-December 2006 period. Then, exact and
approximate semideviations with respect to a 0% benchmark

optimization.

Semivariance is a more plausible
measure of risk than variance, as
Markowitz (1991) himself suggested,
and the heuristic proposed here makes
mean-semivariance optimization just
as easy to implement as mean-variance

return were calculated for all portfolios and subsequently
annualized. The correlation between the 100 exact and
approximate semideviations is 0.97 and the difference
between the averages is in this case higher, 2.1% in annual
terms.

Group 2 consists of five emerging markets (Chile, Hungary,
Mexico, Peru, and South Africa) that over the sample period
displayed statistically-significant negative skewness.
Portfolios combining these
five markets were generated
with the same methodology
described for the markets in
Group 1. As the table shows,
the correlation between the
100 exact and approximate
semideviations is 0.98, and the
difference between the
averages is substantially lower
than in group 1, 0.68% in
annual terms.

Combining the five
emerging markets from Group | and the five from Group 2
into a 10-market portfolio (Group 3), the methodology
described was applied once again. The correlation between
the 100 exact and approximate semideviations is 0.93, and
the average difference between them is 1.80% in annual terms.
For portfolios of emerging markets, then, the proposed
heuristic yields almost perfect correlations between exact and
approximate semideviations, and the average differences
between them are somewhat higher than for the asset classes
previously discussed. In all cases, when the approximation
errs, it does so on the side of caution, overestimating the risk
of the portfolio in the magnitudes already discussed.

Panel C considers portfolios of individual stocks, in
particular the 30 stocks from the Dow Jones Industrial
Average. The 30 stocks were ordered alphabetically and split
into three groups of 10 stocks. For each of these three groups,
portfolios were formed following the same methodology
described earlier: 100 random weights were generated for
each of the 10 stocks, which were subsequently standardized
to ensure that for each portfolio their sum added to one; returns
for each portfolio were generated over the January 1997-
December 2006 period; and their exact and approximate
semideviations were calculated and subsequently annualized.
As the table shows, the correlations between the exact and
approximate semideviations are still very high in all three
groups (0.90, 0.99, and 0.95), and the average differences
between these magnitudes are 2.07%, 2.45%, and 2.34% (in
annual terms) for Groups 1, 2, and 3, again higher than for
asset classes.

Portfolios of the 30 Dow stocks altogether, calculated with
the same methodology already described, show similar results.
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The correlation between exact and approximate
semideviations across the 100 portfolios remains very high
(0.91); and the average difference between these two
magnitudes is 2.67% in annual terms, again higher than for
asset classes. As before, when the approximation errs it does
so on the side of caution, overestimating the risk of the
portfolio in the magnitudes already discussed.

Finally, Panel D considers portfolios of five asset classes,
namely: 1) US stocks, 2) international (EAFE) stocks, 3)
emerging markets stocks, 4) US bonds, and 5) US real estate.
Portfolios of these five asset classes were formed with the
methodology already described. The correlation between the
100 exact and approximate semideviations is a perfect 1.00;
the average difference between these magnitudes, in turn, is
alow 0.87% in annual terms. Again, when the approximation
errs it does so on the side of caution; and again, the heuristic
shows very encouraging results for asset classes.

In short, the evidence for a wide range of portfolios shows
that the heuristic proposed in this article yields portfolio
semivariances that are very highly correlated, as well as close
in value, to the exact portfolio semivariances they intend to
approximate. Importantly, as argued by Nawrocki (1999), and
as is also well known, portfolio optimization is nowadays
used much more for allocating funds across asset classes than
across individual stocks. It is in the former case, precisely,
where the heuristic approach proposed in this article is
particularly accurate.

B. Optimal Portfolios

Having shown that the definition of portfolio semivariance
proposed here is both simple and accurate, we can finally
use it to compare the optimal portfolios that stem from mean-
variance and mean-semivariance optimizations, the latter
based on the proposed heuristic approach. Given that
optimizers are largely used to allocate funds across asset
classes, the assets considered in the optimizations are the five
asset classes in Panel D of Table 1V, that is, US stocks,
international (EAFE) stocks, emerging markets, US bonds,
and US real estate.

There are several portfolio-optimization problems, and
deciding which one is more relevant simply depends on the
goals and restrictions of different investors. Some may want
to minimize risk; others may want to minimize risk subject
to a target return; others may want to maximize return subject
to a target level of risk; and others may want to maximize
risk-adjusted returns. The focus of this section is on this last
problem.

More precisely, the two problems considered are

X15X2 50,
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for the optimization of mean-semivariance (MS) portfolios,
where X is defined as in Equation (12), and the benchmark
return for the semideviation is, as before, 0%.

It is important to notice that, with the heuristic proposed
here, the problem in Equations (17) and (18) can be solved
with the same techniques widely used to solve the problem
in Equations (15) and (16); these include professional
optimization packages, simple optimization packages
available with investment textbooks, and even Excel’s solver.
It is also important to notice that in terms of the required
inputs, the only difference between these two problems is
that Equations (15) and (16) require a (symmetric and
exogenous) covariance matrix and Equation (17) and (18)
require a (symmetric and exogenous) semicovariance matrix,
which can be calculated using Equation (5).

Expected returns, required as inputs in both optimization
problems, were estimated with the (arithmetic) mean return
of each asset class over the whole January 1988-December
2006 sample period. Variances, covariances, semivariances,
and semicovariances were calculated over the same sample
period, the last two with respect to a 0% benchmark return
and according to Equation (5). Optimizations were performed
for combinations of three, four, and five asset classes. The
results of all estimations are shown in Table V.

When optimizing a three-asset portfolio consisting of US
stocks, international stocks, and emerging markets, neither
the MV optimizer nor the MS optimizer give a positive weight
to international stocks. Perhaps unsurprisingly, the MS
optimizer gives a lower weight to emerging markets and a
higher weight to the US market than does the MV optimizer.
The expected monthly return of the optimal MV and MS
portfolios is similar, 1.17% and 1.13%. Although the risk-
adjusted return of the MS optimal portfolio is higher than
that of the MV optimal portfolio, it would be deceiving to
conclude that the MS optimizer outperforms the MV
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This table shows mean-variance (MV) and mean-semivariance (MS) optimal portfolios. Risk is defined as the standard deviation in MV
optimizations and as the semideviation in MS optimizations. RAR denotes risk-adjusted returns defined as (Return-R )/Risk, where R,
denotes the risk-free rate. Return and risk are expressed in monthly terms. Monthly R is assumed at 0.41%. All returns are monthly, over
the January 1988-December 2006 period, in dollars, and account for capital gains and dividends. All numbers but RAR are in percentages.

A full data description is available in the Appendix.

Weights Performance
USA EAFE EMI Bonds NAREIT Retum Risk RAR
Panel A. Three Assets
MV 67.0 0.0 330 1.17 4.30 0.18
MS 784 0.0 216 1.13 2.66 0.27
Panel B. Four Assets
MV 17.5 0.0 18.8 63.7 0.87 0.22
MS 264 0.0 10.2 634 0.84 0.31
Panel C. Five Assets
MV 104 0.0 132 49.1 272 0.91 2.07 0.24
MS 17.1 0.0 3.0 414 38.5 0.90 1.41 0.35

optimizer; this is simply a consequence of the fact that the
semideviation is a one-sided measure of risk.?

The four-asset optimization involves the previous three
asset classes plus US bonds. Again both optimizers assign a
zero weight to international stocks, and again the MS
optimizer allocates less to emerging markets and more to the
US market than does the MV optimizer. Interestingly, both
optimizers allocate a substantial proportion (nearly two thirds)
of the portfolio to bonds. As was the case with three assets,
the expected monthly return of both optimal portfolios is very
similar, 0.87% and 0.84%.

Finally, the five-asset optimization involves the previous

four asset classes plus US real estate. Once again both
optimizers give a zero weight to international stocks, and

once again the MS optimizer allocates less to emerging
markets and more to the US market than does the MV
optimizer. Both optimizers allocate more than 40% of the
portfolio to bonds and no less than 25% of the portfolio to
real estate. And once again, the expected monthly return of
both portfolios is very similar, 0.91% and 0.90%.

It is tempting to draw a conclusion regarding which
optimizer performs better, but it is also largely meaningless.
By definition, the MV optimizer will maximize the excess
returns per unit of volatility, whereas the MS optimizer will
maximize excess returns per unit of volatility below the

3 Comparing the risk-adjusted returns of MV and MS optimizers is non-
informative at best and deceiving at worst. Similarly, comparing the
efficient sets generated by these two approaches, as done by Harlow (1991)
and others, yields little insight, if any. By definition, MV efficient sets
will “outperform” MS efficient sets when plotted on a mean-variance graph,
and the opposite will be the case when plotted on a mean-semivariance
graph.

chosen benchmark. In the end, it all comes down to what any
given investor perceives as the more appropriate measure of
risk.

lll. An Assessment

There is little question that mean-variance optimization is
far more pervasive than mean-semivariance optimization.
This is, at least in part, due to the fact that mean-variance
problems have well-defined, well-known closed-form
solutions, which implies that users know what the optimization
package is doing and what characteristics the solution
obtained has. When optimizing portfolios on the basis of
means and semivariances, in turn, little is usually known about
the algorithms used to obtain optimal portfolios and the
characteristics of the solution obtained.

This article proposes a heuristic approach for the
calculation of portfolio semivariance, which essentially puts
mean-semivariance optimization within reach of any
academic or practitioner familiar with mean-variance
optimization. By replacing the symmetric and exogenous
covariance matrix by a symmetric and exogenous
semicovariance matrix, the well-defined, well-known closed-
form solutions of mean-variance problems can be applied to
mean-semivariance problems. This takes mean-semivariance
optimization away from the realm of black boxes and into
the realm of standard portfolio theory.

The heuristic proposed is both simple and accurate.
Estimating semicovariances is just as casy as esitmating
covariances, and aggregating them into a portfolio
semivariance is, with the proposed heuristic, just as easy as
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aggregating covariances into a portfolio variance. Similarly,
finding optimal portfolios (regardless of whether that means
minimizing risk, minimizing risk subject to a target return,
maximizing return subject to a target level of risk, or
maximizing risk-adjusted returns) when risk is thought of as
semivariance can be done with the same methods used as
when risk is thought of as variance.

In terms of accuracy, the proposed definition of portfolio
semivariance was evaluated using portfolios of stocks,
markets, and asset classes. The evidence discussed shows
that the portfolio semivariances generated by the heuristic
proposed are very highly correlated, as well as close in value,
to the exact portfolio semivariances they aim to approximate.

Appendix
1. A Brief Introduction to the Semideviation

This section aims to introduce the semideviation to readers
largely unaware of this concept. Readers who want to explore
this issue further are referred to Estrada (2006), an article
from which section of the appendix borrows heavily.

A. Shortcomings of the Standard Deviation

Consider an asset with a mean annual return of 10%, and
assume that in the last two years the asset returned —5% and
25%. Because both returns deviate from the mean by the same
amount (15%), they both increase the standard deviation of
the asset by the same amount. But is an investor in this asset
equally (un)happy in both years? Not likely, which
underscores one of the main problems of the standard
deviation as a measure of risk: it treats an x% fluctuation
above and below the mean in the same way, though investors
obviously do not. Should it not, then, a proper measure of
risk capture this asymmetry?

The second column of Table A1 shows the annual returns
of Oracle (R) for the years 1995-2004. As the next-to-last
row shows, the stock’s mean annual return (u) during this
period was a healthy 41.1%. And as is obvious from a casual
observation of these returns without resorting to any formal
measure of risk, Oracle treated its shareholders to quite a
bumpy ride.

The third column of the table shows the difference between
each annual return and the mean annual return; for example,
for the year 2004, —37.4% = 3.7%—41.1%. The fourth column
shows the square of these numbers; for example, 0.1396 =
(-0.374)*. The average of these squared deviations from the
mean is the variance (0.8418), and the square root of the
variance is the standard deviation (91.7%).

JOURNAL OF APPLIED FINANCE— SPRING/SUMMER 2008

This heuristic is particularly accurate when optimizing across
asset classes, which nowadays is the main use given to
optimizers.

There is a growing literature on downside risk and an
increasing acceptance of this idea among both academics and
practitioners. Semivariance is a more plausible measure of
risk than variance, as Markowitz (1991) himself suggested,
and the heuristic proposed here makes mean-semivariance
optimization just as easy to implement as mean-variance
optimization. For this reason, this article not only provides
another tool that can be added to the financial toolbox, but
also hopefully contributes toward increasing the acceptance
and use of mean-semivariance optimization.H

Note that all the numbers in the fourth column are positive,
which means that every return, regardless of its sign,
contributes to increasing the standard deviation. In fact, the
largest number in this fourth column (the one that contributes
to increasing the standard deviation the most) is that for the
year 1999 when Oracle delivered a positive return of almost
290%. Now, would an investor that held Oracle during the
year 1999 be happy or unhappy? Would he count this
performance against Oracle as the standard deviation as a
measure of risk does?

We will get back to this below but before we do so consider
another shortcoming of the standard deviation as a measure
of risk: it is largely meaningless when the underlying
distribution of returns is not symmetric. Skewed distributions
of returns, which are far from unusual in practice, exhibit
different volatility above and below the mean. In these cases,
variability around the mean is at best uninformative and more
likely misleading as a measure of risk.

B. The Semideviation

As Table A1 makes clear, one of the main problems of the
standard deviation as a measure of risk is that, unlike
investors, it treats fluctuations above and below the mean in
the same way. However, tweaking the standard deviation so
that it accounts only for fluctuations below the mean is not
difficult.

The fifth column of Table A1 shows “conditional returns”
with respect to the mean; that is, the lower of each return
minus the mean return or zero. In other words, if a return is
higher than the mean, the column shows a 0; if a return is
lower than the mean, the column shows the difference between
the two. To illustrate, in 1995 Oracle delivered a 44.0% return,
which is higher than the mean return of 41.1%; therefore the
fifth column shows a 0 for this year. In 2004, however, Oracle
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Year R R-u (R-p)? Min(R-p, 0) {Min(R-pu, 0)}?
1995 44.0% 3.0% 0.0009 0.0% 0.0000
1996 47.8% 6.7% 0.0045 0.0% 0.0000
1997 ~-19.8% ~60.9% 0.3709 ~60.9% 0.3709
1998 93.3% 52.2% 0.2726 0.0% 0.0000
1999 289.8% 248.7% 6.1849 0.0% 0.0000
2000 3.7% -37.3% 0.1394 ~-37.3% 0.1394
2001 ~52.5% ~93.6% 0.8752 ~93.6% 0.8752
2002 ~21.8% ~-62.9% 0.3952 ~62.9% 0.3952
2003 22.5% ~18.6% 0.0345 ~18.6% 0.0345
2004 3.7% ~37.4% 0.1396 ~37.4% 0.1396
Average 41.1% 0.8418 0.1955
Square Root 91.7% 44.2%

delivered a 3.7% return, which is below the mean return of
41.1%; therefore, the fifth column shows the shortfall of
—37.4% for this year.

Comparing the third and the fifth columns, it is clear that
when a return is lower than the mean both columns show the
same number; when a return is higher than the mean, however,
the third column shows the difference between these two
numbers and the fifth column shows a 0. Furthermore, it is
clear that “conditional returns” are either negative or 0 but
never positive.

The last column of Table A1 shows the square of the
numbers in the fifth column. As the next-to-last row shows,
the average of these numbers is 0.1955; and as the last row
shows, the square root of this number is 44.2%. This number,
which measures volatility below the mean return, is obviously
a step in the right direction because we have isolated the
downside that investors associate with risk. But is there
anything special about the mean return? Is it possible that
some investors are interested to assess volatility below the
risk-free rate? Or volatility below 0? Or, more generally,
volatility below any given return they may consider relevant?

That is exactly what the downside standard deviation of
returns with respect to a benchmark B measures. This
magnitude, usually referred to as the semideviation with
respect to B (X)), for short, is formally defined as

2, =W/ Y] { Min(&, - B,0)}’

and measures downside volatility; or, more precisely,
volatility below the benchmark return B. In this expression, ¢
indexes time and 7" denotes the number of observations.
Table A2 shows again the returns of Oracle for the 1995-
2004 period, as well as the “conditional returns” with respect
to three different benchmarks: the mean return, a risk-free

rate (R) of 5%, and 0. The third column of this exhibit is the
same as the last column of Table A1 and therefore the
benchmark is the mean return; the fourth and fifth columns
show “conditional returns” with respect to the other two
benchmarks (a risk-free rate of 5% and 0). The last row shows
the semideviations with respect to all three benchmarks. (The
next-to-last row shows the semivariances with respect to all
three benchmarks, which are simply the square of the
semideviations.)

How should these numbers be interpreted? Each
semideviation measures volatility below its respective
benchmark. Note that because the risk-free rate of 5% is below
Oracle’s mean return of 41.1%, we would expect (and find)
less volatility below the risk-free rate than below the mean.
Similarly, we would expect (and again find) less volatility
below 0 than below the mean or the risk-free rate.

It may seem that a volatility of 21.5% below a risk-free
rate of 5%, or a volatility of 19% below 0, do not convey a
great deal of information about Oracle’s risk. In fact, the
semideviation of an asset is best used in two contexts: one is
in relation to the standard deviation of the same asset and the
other is in relation to the semideviation of other assets.

Table A3 shows the standard deviation (o) of Oracle and
Microsoft over the 1995-2004 period, as well as the
semideviations with respect to the mean of each stock Z),
with respect to a risk-free rate of 5% (), and with respect to
0 (%,) over the same period. The semideviations of Oracle
are the same as those in Table A2. The mean return of
Microsoft during this period was 35.5%.

Note that although the standard deviations suggest that
Oracle is far riskier than Microsoft, the semideviations tell a
different story. First, note that although the volatility of Oracle
below its mean is less than half of its total volatility (0.442/
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Table A2. Semideviations
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Year R {Min(R-p, 0)}? {Min(R-Ry, 0)}* {Min(R-0, 0)}?
1995 44.0% 0.0000 0.0000 0.0000
1996 47.8% 0.0000 0.0000 0.0000
1997 -19.8% 0.3709 0.0617 0.0393
1998 93.3% 0.0000 0.0000 0.0000
1999 289.8% 0.0000 0.0000 0.0000
2000 3.7% 0.1394 0.0002 0.0000
2001 ~52.5% 0.8752 0.3304 0.2754
2002 -21.8% 0.3952 0.0718 0.0475
2003 22.5% 0.0345 0.0000 0.0000
2004 3.7% 0.1396 0.0002 0.0000
Average 41.1% 0.1955 0.0464 0.0362
Square Root 44.2% 21.5% 19.0%
Table A3. Volatility and Downside Volatility
Company o Zy P 2o
Oracle 91.7% 44.2% 21.5% 19.0%
M icroso ft 50.4% 38.1% 23.1% 21.1%

0.917 = 48.2%), the same ratio for Microsoft is over 75%
(0.381/0.504 = 75.5%). In other words, given the volatility
of each stock, much more of that volatility is below the mean
in the case of Microsoft than in the case of Oracle. (In fact,
the distribution of Microsoft’s returns has a slight negative
skewness, and that of Oracle a significant positive skewness.)

Of course it is still the case that the semideviation with
respect to the mean of Oracle is larger than that of Microsoft;
but recall that the mean return of Oracle (41.1%) is also higher
than that of Microsoft (35.5%). For this reason, it is perhaps
more telling to compare semideviations with respect to the
same benchmark for both stocks.

Comparing the semideviations of Oracle and Microsoft with
respect to the same risk-free rate of 5%, we see that Microsoft

exhibits higher downside volatility (23.1% versus 21.5%).
And comparing their semideviations with respect to 0, we
again see that Microsoft exhibits higher downside volatility
(21.1% versus 19.0%). Therefore, although the standard
deviations suggest that Oracle is riskier than Microsoft, the
semideviations suggest the opposite.

2. The Data

Table A4 describes the data used in Section II of the article
(The Evidence). All series are monthly, in dollars, and account
for capital gains and dividends. Table 3 is based on data over
the January 1997-December 2006 period and Table 4 on data
over the January 1988-December 2006 period.
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Table A4. The Data

USA MSCI USA

EMI MSCI EMI

NAREIT FTSE NAREIT - All REITs

Emerging Markets MSCT indices

Emerging Markets Group 1: Five emerging markets (China, Egypt, Korea, Malaysia, Venezuela) with
significant positive skewness

Emerging Markets Group 2: Five emerging markets (Chile, Hungary, Mexico, Peru, South Africa) with
significant negative skewness

Emerging Markets Group 3: Ten markets, the five from Group 1 plus the five from Group 2

DIJIA Stocks Individual stocks from the Dow Jones Industrial Average index

DIJIA Stocks Group 1: The first ten stocks from an alphabetical ordering of the Dow (3M, Alcoa, Altria,
Amex, AIG, AT&T, Boeing, Caterpillar, Citigroup, Coca-Cola)

DIJIA Stocks Group 2: The second ten stocks from an alphabetical ordering of the Dow (DuPont,
ExxonMobil, GE, GM, HP, HomeDepot, Honeywell, Intel, IBM, J&J)

DJIA Stocks Group 3: The third ten stocks from an alphabetical ordering of the Dow (JPM-Chase,
McDonald’s, Merck, Microsoft, Pfizer, P&G, United Tech, Verizon, WalMart, WaltDisney)

DIJIA Stocks Group 4: All thirty stocks in the Dow

Asset Classes

US stocks (MSCI USA), international stocks (MSCI EAFE), emerging markets stocks

(MSCI EMI), US bonds (10-year Government bonds — Global Financial Data), and US real

estate (FTSE NAREIT — All REITs)

MSCI: Morgan Stanley Capital Indices; EMI: Emerging Markets Index; FTSE: Financial Times Stock Exchange; NAREIT: National
Association of Real Estate Investment Trusts; DJIA: Dow Jones Industrial Average; EAFE: Europe, Australia, and the Far East.
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